Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1244). Services for accessing these data are described at the back of the journal.

References

Albert, A. \& Cano, F. H. (1991). CONTACTOS. A Program for the Systematic Study of Aromatic Ring Interactions. Instituto Rocasolano, CSIC, Madrid, Spain.
Appleman, D. C. (1971). LSUCRE. US Geological Survey, Washington, DC, USA.
Cameron, T. S., Prout, K., Denton, B., Spagna, R. \& White, E. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 176-185.

Hall, S. R. \& Stewart, J. M. (1990). Editors. Xtal3.0 Reference Manual. Universities of Western Australia, Australia, and Maryland, USA.
Kaneda, T. \& Tanaka, J. (1976). Bull. Chem. Soc. Jpn, 49, 1799-1804.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
Rodriguez, J. G., del Valle, C., Esteban-Calderon, C. \& MartinezRipoll, M. (1995). J. Chem. Crystallogr. 25, 249-257.
Rodriguez, J. G. \& San Andres, A. (1991). J. Heterocycl. 28, 12931299.

Rodriguez, J. G., Temprano, F., Esteban-Calderon, C. \& MartinezRipoll, M. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 2117-2122. Rodriguez, J. G. \& Urrutia, A. (1996). Unpublished results.
Schollmeyer, D., Fisher, G. \& Pindur, U. (1995). Acta Cryst. C51, 2572-2575.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1980). The XRAY80 System. Computer Science Center, University of Maryland, College Park, Maryland, USA.

Acta Cryst. (1997). C53, 1347-1350

Intermediates for the Convenient Synthesis of Bicyclic Aziridinocarbamates

Joel T. Mague, Harry E. Ensley and Jing Ling
Department of Chemistry, Tulane University, New Orleans, LA 70118, USA. E-mail: joelt@mailhost.tcs.tulane.edu

(Received II February 1997; accepted 22 April 1997)

Abstract

3,4,5,6-Tetrahydro-5-iodo-4,4-dimethyl- 2 H -1,3-oxazin-2-one, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{INO}_{2}$, (1), 4,5-dihydro-4-(1-iodoethyl)-4-methyl-3H-1,3-oxazol-2-one, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{INO}_{2}$, (2), and 3,4,5,6-tetrahydro-5-iodo-6-(n-pentyl)-2H-1,3-oxazin-2one, $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{2}$, (3), are examples of a series of readily prepared intermediates in a convenient synthesis of bi-

cyclic aziridinocarbamates. The structures obtained confirm the stereochemistries deduced from spectroscopic data. Compounds (1) and (2) exist in the solid state as centrosymmetric $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded dimers: for (1), $\mathrm{O} 1 \cdots \mathrm{~N}^{\prime}=2.901$ (8), and for (2), $\mathrm{N} \cdots \mathrm{O}^{\prime}=$ 2.902 (4) \AA. Compound (3) crystallizes with two independent molecules in the asymmetric unit which are hydrogen-bonded to form centrosymmetric tetramers: $\mathrm{O} 2 \cdots \mathrm{~N}^{\prime}=2.970$ (6) and $\mathrm{O} 4 \cdots \mathrm{Nl}^{\prime}=2.819$ (6) \AA.

Comment

Recently, a convenient synthesis of bicyclic aziridinocarbamates, (I), has been developed (Ensley \& Ling, 1997) involving addition of iodine isocyanate to allylic alcohols. Despite the exclusive formation of the fivemembered oxazolidinone ring in the final products, spectroscopic data on the cyclic iodide precursors to (I) suggested that some of these contained six-membered oxazinone rings. To confirm this, the structures of representative examples of these intermediates [(1)-(3)] were determined.

(1)

(3)

(I)

(2)

Compound (2) exists in the solid state as pairs of hydrogen-bonded molecules with $\mathrm{N}-\mathrm{H} 1 n \cdots \mathrm{O}^{\prime}$ and $\mathrm{N}^{\prime}-\mathrm{H} 1 n^{\prime} \cdots \mathrm{O} 2$ pairwise interactions: $\mathrm{H} 1 n \cdots \mathrm{O}^{\prime}=$ 2.03 (2) \AA and $\mathrm{N}-\mathrm{H} 1 n \cdots \mathrm{O}^{\prime}=163(1)^{\circ}$ (primed atoms in the molecule at $-x,-y,-z$). Although the H atom bonded to N in (1) could not be located, it is likely that an analogous pairwise hydrogen bonding interaction occurs here as well based on the $01 \cdots \mathrm{~N}^{\prime}$ distance of 2.901 (8) \AA (primed atom in the molecule at $-1-x, 2-y,-z$) which is virtually identical to the $\mathrm{N} \cdots{ }^{\prime} 2^{\prime}$ distance [2.902 (4) \AA] seen in (2). In (3), hydrogen bonding occurs between the two independent molecules to give tetramers disposed about inversion centers (Fig. 4) with the aliphatic side chains disposed on the outer surfaces to generate hydrophobic channels between them. The hydrogen bonding involves O2$\mathrm{H} 2 n^{\prime} \cdots \mathrm{N} 2^{\prime}\left[\mathrm{O} 2 \cdots \mathrm{H} 2 n^{\prime}=1.99\right.$ (2) \AA and $\mathrm{O} 2 \cdots \mathrm{H} 2 n^{\prime}-$ $\mathrm{N} 2^{\prime}=166(1)^{\circ}$; primed atoms in the molecule at $1-x,-y, 1-z]$ and $\mathrm{O} 4 \cdots \mathrm{H} 1 n^{\prime}-\mathrm{Nl}^{\prime} \quad\left[\mathrm{O} 4 \cdots \mathrm{H} 1 n^{\prime}=\right.$ 1.98 (2) \AA and $\mathrm{O} 4 \cdots \mathrm{H} 1 n^{\prime}-\mathrm{N}^{\prime}=144(1)^{\circ}$; primed

Fig. 1. ORTEPII (Johnson, 1976) drawing of (1). Displacement ellipsoids are drawn at the 50% probability level except for H atoms which are drawn arbitrarily small.

Fig. 2. ORTEPII (Johnson, 1976) drawing of (2). Displacement ellipsoids are drawn at the 50% probability level except for H atoms which are drawn arbitrarily small.

Fig. 3. ORTEPII (Johnson, 1976) drawing of molecule A (top) and molecule B (bottom) in (3). Displacement ellipsoids are drawn at the 40% probability level except for H -atoms which are drawn arbitrarily small.

Fig. 4. Partial unit-cell contents of (3) showing the hydrogen bonding. The longest axis is the a axis and the c axis is out of the page.
atoms in the molecule at $\left.-\frac{1}{2}+x,-\frac{1}{2}+y, z\right]$. All distances and angles in the three molecules appear to be unexceptional and compare favorably with those found in related species (Friesen, Kolaczewska \& Lough, 1992; Robinson, Hua, Good, Wang \& Meyers, 1993; Turley, 1972; Stankovic et al., 1985; Argay, Kalman, Kapor, Stajer \& Bernath, 1985; Hirayama, Kohno, Shimizu \& Kasai, 1991). The only significant difference between the two independent molecules, A and B, in (3) is the orientation of the aliphatic side chain, as is evident from Fig. 3, and the torsion angles $\mathrm{C} 1-$ $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6\left[-54.7(7)^{\circ}\right]$ and $\mathrm{C} 10-\mathrm{C13}-\mathrm{C} 14-\mathrm{C} 15$ [$\left.-164.9(4)^{\circ}\right]$. For (1), the $\mathrm{N}, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 4, \mathrm{O} 1, \mathrm{O} 2$ portion is planar to within 0.020 (7) \AA, with C3 0.688 (7) \AA out of the plane, while in (3), only the $\mathrm{N} 1, \mathrm{O} 1, \mathrm{O} 2$, $\mathrm{C} 2, \mathrm{C} 3$ portion in $A(\mathrm{~N} 2, \mathrm{O} 3, \mathrm{O} 4, \mathrm{C} 11, \mathrm{C} 12$ in $B)$ is planar. The maximum deviation from the plane is $0.013(5) \AA$ in A and $0.033(5) \AA$ in B. In $A, C 1$ and C 4 are 0.491 (5) and -0.181 (5) \AA, respectively, from the mean plane. Corresponding displacements in B are 0.551 (5) and -0.178 (5) \AA, respectively, for C 10 and C 13 . The $\mathrm{O} 1, \mathrm{O} 2, \mathrm{C} 6, \mathrm{~N}, \mathrm{C} 5$ portion of (2) is planar to within 0.016 (5) \AA, with C3 0.141 (3) \AA from the plane.

Experimental

Compounds (1)-(3), prepared as described elsewhere (Ensley \& Ling, 1997), were recrystallized from chloroform/hexane
mixtures. Suitable crystals were cut to size and mounted on thin glass fibers with epoxy cement.

Compound (1)
Crystal data
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{INO}_{2}$
$M_{r}=255.06$
Triclinic
P1
$a=6.686(3) \AA$
$b=11.304$ (9) \AA
$c=6.399$ (2) \AA
$\alpha=95.46(4)^{\circ}$
$\beta=113.56(3)^{\circ}$
$\gamma=83.54(5)^{\circ}$
$V=439.8(4) \AA^{3}$
$Z=2$
$D_{x}=1.93 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scans (North, Phillips \& Mathews, 1968)
$T_{\text {min }}=0.515, T_{\text {max }}=0.630$
1678 measured reflections
1535 independent reflections
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 23 reflections
$\theta=13-16^{\circ}$
$\mu=3.59 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate
$0.43 \times 0.33 \times 0.13 \mathrm{~mm}$ Colorless

1264 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 7$
$k=-13 \rightarrow 13$
$l=-7 \rightarrow 6$
2 standard reflections frequency: 120 min intensity decay: -8.6%

Refinement

Refinement on F
$R=0.064$
$w R=0.082$
$S=2.216$
1264 reflections
91 parameters
H atoms not refined
$w=4 F_{o}^{2} /\left[\sigma^{2}\left(F_{o}^{2}\right)\right.$
$\left.+0.0036 F_{o}^{4}\right]$

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (1)

$\mathrm{O} 1-\mathrm{Cl}$	$1.20(1)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.354(9)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.43(1)$
$\mathrm{C} 1-\mathrm{O}-\mathrm{C} 2$	$121.0(6)$
$\mathrm{Cl}-\mathrm{N}-\mathrm{C} 4$	$12.3(6)$
$\mathrm{O}-\mathrm{Cl}-\mathrm{O} 2$	$118.2(7)$
$\mathrm{Ol}-\mathrm{Cl}-\mathrm{N}$	$122.7(7)$
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{Cl}-\mathrm{O} 1$	$178.6(6)$
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{Cl}-\mathrm{N}$	$-0.2(9)$
$\mathrm{Cl}-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$-27.4(8)$
$\mathrm{C} 4-\mathrm{N}-\mathrm{Cl}-\mathrm{Ol}$	$178.3(5)$

Compound (2)
Crystal data
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{INO}_{2}$
$M_{r}=255.06$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$

Triclinic
$P \overline{1}$
$a=6.1650$ (9) \AA
$b=6.762$ (1) \AA
$c=11.761(1) \AA$
$\alpha=102.81(1)^{\circ}$
$\beta=90.09(1)^{\circ}$
$\gamma=117.05(1)^{\circ}$
$V=422.8(1) \AA^{3}$
$Z=2$
$D_{x}=2.00 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scans (North, Phillips \& Mathews, 1968)
$T_{\text {min }}=0.315, T_{\text {max }}=0.619$
1829 measured reflections
1664 independent reflections
Cell parameters from 25 reflections
$\theta=12-19^{\circ}$
$\mu=3.73 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate
$0.46 \times 0.33 \times 0.13 \mathrm{~mm}$
Colorless

1487 reflections with
$I>3 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=25.97^{\circ}$
$h=0 \rightarrow 7$
$k=-8 \rightarrow 7$
$l=-14 \rightarrow 14$
2 standard reflections frequency: 120 min

Refinement

Refinement on F
$R=0.025$
$w R=0.037$
$S=1.39$
1487 reflections
91 parameters
H atoms not refined intensity decay: -2.2%
$w=4 F_{o}^{2} /\left[\sigma^{2}\left(F_{o}^{2}\right)\right.$
$\left.+0.0016 F_{o}^{4}\right]$
$(\Delta / \sigma)_{\text {max }}=0.025$
$\Delta \rho_{\text {max }}=0.79 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.94 \mathrm{e} \AA^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray
Crystallography (Vol. IV)

Table 2. Selected geometric parameters ($\left(\AA^{\circ}\right)$ for (2)

$\mathrm{O} 1-\mathrm{C} 5$	$1.430(4)$	$\mathrm{N}-\mathrm{C} 6$	$1.343(4)$
$\mathrm{O} 1-\mathrm{C} 6$	$1.355(4)$	$\mathrm{N}-\mathrm{H} 1 n$	$0.90(2)$
$\mathrm{O} 2-\mathrm{C} 6$	$1.207(4)$	$\mathrm{C} 3-\mathrm{C} 5$	$1.554(4)$
$\mathrm{N}-\mathrm{C} 3$	$1.455(4)$		
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 6$	$109.5(3)$	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 3$	$106.8(3)$
$\mathrm{C} 3-\mathrm{N}-\mathrm{C} 6$	$113.9(3)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{O} 2$	$121.8(3)$
$\mathrm{C} 3-\mathrm{N}-\mathrm{H} 1 n$	$126(1)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{N}$	$109.8(3)$
$\mathrm{C} 6-\mathrm{N}-\mathrm{H} 1 n$	$120(1)$	$\mathrm{O} 2-\mathrm{C} 6-\mathrm{N}$	$128.4(3)$
$\mathrm{N}-\mathrm{C} 3-\mathrm{C} 5$	$99.0(3)$		
$\mathrm{C} 6-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 3$	$-7.2(3)$	$\mathrm{C} 6-\mathrm{N}-\mathrm{C} 3-\mathrm{C} 5$	$-8.9(3)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 6-\mathrm{O} 2$	$-178.5(3)$	$\mathrm{N}-\mathrm{C} 3-\mathrm{C} 5-\mathrm{O} 1$	$9.3(3)$
$\mathrm{C} 5-\mathrm{O}-\mathrm{C} 6-\mathrm{N}$	$1.6(4)$		

Compound (3)

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{16}$ INO N_{2}
$M_{r}=297.14$
Monoclinic
$C 2 / c$
$a=42.768$ (9) \AA
$b=11.338(2) \AA$
$c=10.123(1) \AA$
$\beta=102.16(1)^{\circ}$
$V=4799(1) \AA^{3}$
$Z=16$
$D_{x}=1.64 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=12-17^{\circ}$
$\mu=2.64 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate
$0.43 \times 0.36 \times 0.20 \mathrm{~mm}$
Colorless

Data collection
Enraf-Nonius CAD-4
diffractometer $\theta / 2 \theta$ scans
Absorption correction:
ψ scans (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.332, T_{\text {max }}=0.593$
4511 measured reflections
4210 independent reflections

2840 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 50$
$k=0 \rightarrow 13$
$l=-12 \rightarrow 11$
2 standard reflections frequency: 120 min intensity decay: $\mathbf{- 9 . 9 \%}$

Refinement

Refinement on F
$R=0.039$
$w R=0.050$
$S=1.86$
2840 reflections
235 parameters
H atoms not refined
$w=4 F_{o}^{2} /\left[\sigma^{2}\left(F_{o}^{2}\right)\right.$
$\left.+0.0009 F_{o}^{4}\right]$
Table 3. Selected geometric parameters (\AA, ${ }^{\circ}$) for (3)

O1-C3	1.340 (6)	O3-C12	1.362 (6)
O1-C4	1.466 (6)	O3-C13	1.455 (6)
O2-C3	1.212 (6)	$\mathrm{O}^{-\mathrm{Cl}} 12$	1.212 (6)
$\mathrm{N} 1-\mathrm{C} 2$	1.440 (7)	N2-Cl1	1.457 (7)
$\mathrm{N} 1-\mathrm{C} 3$	1.341 (6)	N2-C12	1.337 (6)
$\mathrm{N} 1-\mathrm{H} / n$	0.96 (4)	$\mathrm{N} 2-\mathrm{H} 2 n$	1.00 (4)
$\mathrm{Cl}-\mathrm{C} 2$	1.503 (7)	C10-C11	1.510 (8)
$\mathrm{Cl}-\mathrm{C} 4$	1.490 (7)	$\mathrm{C10-C13}$	1.514 (8)
$\mathrm{C} 3-\mathrm{Ol}-\mathrm{C} 4$	121.0(4)	$\mathrm{C} 12-\mathrm{O} 3-\mathrm{Cl} 3$	120.5 (4)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	126.2 (4)	$\mathrm{C} 11-\mathrm{N} 2-\mathrm{Cl} 2$	126.0 (4)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 n$	127 (1)	$\mathrm{C} 11-\mathrm{N} 2-\mathrm{H} 2 n$	124 (1)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1 n$	105 (1)	$\mathrm{C} 12-\mathrm{N} 2-\mathrm{H} 2 n$	110 (1)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 4$	109.1 (4)	$\mathrm{C} 11-\mathrm{Cl0}-\mathrm{C} 13$	108.4 (4)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{Cl}$	110.7 (4)	N2-C11-C10	110.7 (4)
$\mathrm{Ol}-\mathrm{C} 3-\mathrm{O} 2$	117.5 (5)	O3-C12-04	118.0 (5)
$\mathrm{Ol}-\mathrm{C} 3-\mathrm{N} 1$	117.8 (5)	$\mathrm{O} 3-\mathrm{Cl2}-\mathrm{N} 2$	118.2 (4)
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{N} 1$	124.7 (5)	$\mathrm{O} 4-\mathrm{Cl2-N2}$	123.8 (5)
$\mathrm{Ol}-\mathrm{C} 4-\mathrm{Cl}$	111.1 (4)	O3-C13-C10	110.7 (4)
O1-C4-C5	105.3 (4)	O3-C13-C14	106.6 (4)
$\mathrm{Cl}-\mathrm{C} 4-\mathrm{C} 5$	117.6 (5)	$\mathrm{C} 10-\mathrm{C} 13-\mathrm{Cl} 4$	116.4 (5)
C4-01-C3-02	172.3 (4)	C13-O3-C12--04	173.1 (4)
$\mathrm{C} 4-\mathrm{Ol}-\mathrm{C} 3-\mathrm{N} 1$	-10.1 (6)	$\mathrm{C} 13-\mathrm{O} 3-\mathrm{C} 12-\mathrm{N} 2$	-7.4 (6)
C3-01-C4-Cl	37.5 (6)	$\mathrm{C} 12-\mathrm{O} 3-\mathrm{Cl} 3-\mathrm{Cl} 10$	38.6 (6)
C3-O1-C4-C5	165.8 (4)	$\mathrm{C} 12-\mathrm{O} 3-\mathrm{Cl} 3-\mathrm{C} 14$	166.1 (4)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{Cl}$	-22.2 (7)	$\mathrm{C} 12-\mathrm{N} 2-\mathrm{Cl1}-\mathrm{C} 10$	-18.0 (7)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{O} 1$	2.3 (7)	$\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 12-\mathrm{O} 3$	-3.6(7)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{O} 2$	179.8 (5)	$\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 12-\mathrm{O} 4$	175.9 (4)
$\mathrm{C} 4-\mathrm{Cl}-\mathrm{C} 2-\mathrm{N} 1$	46.8 (5)	$\mathrm{C} 13-\mathrm{C} 10-\mathrm{Cl1}-\mathrm{N} 2$	46.6 (5)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 4-\mathrm{Ol}$	-54.7 (5)	$\mathrm{C} 11-\mathrm{Cl} 0-\mathrm{Cl} 3-\mathrm{O} 3$	-57.1(5)
C2-C1-C4-C5	-176.0 (4)	C11-C10-C13-C14	-179.0 (4)

General procedures for crystal orientation, unit-cell determination, and refinement and collection of intensity data have been published (Mague \& Lloyd, 1989). For (1) and (2), no cells of higher symmetry than the initially determined triclinic ones could be found and, with reasonable densities calculated with $Z=2, P \overline{1}$ was selected for the space groups. For (3), the observed systematic absences were consistent with either Cc or $C 2 / c$. As the intensity statistics indicated a centrosymmetric space group, the latter was chosen. In all three cases, the choice was confirmed by the successful refinement. Following location of the I atom(s) by the indicated methods, refinement proceeded satisfactorily and virtually all H atoms, except for
that attached to N in (1) and to the methyl groups in (3), could be seen in $\Delta \rho$ maps in the final stages. Those attached to C3 in (1), Cl and N in (2), and $\mathrm{Cl}, \mathrm{C} 4, \mathrm{~N} 1, \mathrm{Cl} 0, \mathrm{Cl} 3$ and N 2 in (3) were placed in the positions indicated by the $\Delta \rho$ maps and allowed to ride on the attached atoms. The remainder, except for the methyl H atoms of (3) for which no reliable positions could be found, were placed in calculated positions ($\mathrm{C}-\mathrm{H}=$ $0.98 \AA$) and updated periodically. All H atoms were assigned isotropic displacement parameters 1.2 times those of the attached atoms. The major features in the $\Delta \rho$ map for (1) are all within $1.0 \AA$ of the I atom and presumably result from the combined results of crystal decomposition and shortcomings in the empirical absorption correction. The large anisotropic displacement parameters for C8, and particularly C9, in (3) suggested disorder for this portion of the n-pentyl substituent. However, careful inspection of $\Delta \rho$ maps in this region gave no indication of resolved alternate positions for these atoms. Consequently, only one site was refined for each.

For all compounds, data collection: CAD-4 Software (EnrafNonius, 1989); cell refinement: CAD-4 Software; data reduction: PROCESS in MolEN (Fair, 1990). Program(s) used to solve structures: Patterson and Fourier methods for (1) and (2); direct methods using MULTAN80 (Main et al., 1980) for (3). For all compounds, program(s) used to refine structures: LSFM in MolEN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: $C I F$ VAX in MolEN.

We thank the Chemistry Department of Tulane University for generous financial support of the X-ray diffraction facility.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR 1050). Services for accessing these data are described at the back of the journal.

References

Argay, G., Kalman, A., Kapor, A., Stajer, G. \& Bernath, G. (1985). J. Mol. Struct. 131, 31-43.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Ensley, H. E. \& Ling, J. (1997). Tetrahedron Lett. Submitted.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Friesen, R. W., Kolaczewska, A. E. \& Lough, A. J. (1992). Acta Cryst. C48, 1275-1279.
Hirayama, N., Kohno, M., Shimizu, E. \& Kasai, M. (1991). Acta Cryst. C47, 680-682.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Maguc, J. T. \& Lloyd, C. L. (1989). Organometallics, 7, 983-993.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24. 351-359.
Robinson, P. D., Hua, D. H., Good, L. A., Wang, H. \& Meyers, C. Y. (1993). Acta Cryst. C49, 1238-1240.

Stankovic, S., Kapor, A., Ribar, B., Kalman, A., Argay, G., Karanovic, L.. Stajer. G. \& Bernath. G. (1985). J. Mol. Struct. 131, 45-53.

Turley, J. W. (1972). Acta Cryst. B28, 140-143.

